

Unlocking the Power of Digital Twins for Streaming Analytics and Simulation of Large Systems

August 1, 2023 Dr. William Bain, Founder & CEO, wbain@scaleoutsoftware.com

- A new vision for digital twins: real-time analytics and simulation at scale
- Some examples
- Why not "traditional" streaming analytics?
- Why digital twins?
- Target use cases
- Development process
- Enabling technology: in-memory computing
- Aggregate analytics
- Demo

About ScaleOut Software

- Develops and markets software for in-memory computing:
 - Scales application performance and
 - Provides real-time analytical insights & simulation using digital twins
 - With proprietary in-memory data storage and computing technology
- Deep domain expertise:
 - Dr. William Bain, Founder & CEO. Bell Labs, Intel, Microsoft
 - Over 18 years in the market
 - Consistent track record of innovation and technology leadership
 - Introduced a digital twin hosting platform in 2018
- Flexible business model to meet diverse needs:
 - Fully supported software releases; on-premise or in the cloud
 - Dedicated to ease-of-use to minimize training and lower TCO
 - Choice of licensing models: perpetual, subscription, cloud-hosted

ScaleOut Digital Twin Streaming Service[™]

ScaleOut Software

Uses a scalable in-memory compute engine to host digital twins for real-time monitoring and simulation.

- Build & deploy real-time and simulation digital twin models.
- Incorporate C#/Java code, business rules, and machine learning
- Create & visualize real-time aggregate analytics and continuous queries.
- Access an Azure-hosted cloud service or run on-premises.
- Use an intuitive web-based UI.
- Connect to data sources using Azure IoT Hub, AWS, Kafka, and REST.

ScaleOut Digital Twin Streaming Service[™]

A New Vision for Digital Twins

A digital twin is a virtual representation of real-world entities and processes, synchronized at a specified frequency and fidelity. ... Digital twins use real-time and historical data to represent the past and present and simulate predicted futures. ... -- as defined by the Digital Twin Consortium

- Digital twins were conceived to help design and test complex new devices (PLM).
- More recently, operational digital twins are used in small numbers to track telemetry in production for preventative maintenance.
- The next step: use large collections of digital twins to track systems with many data sources:
 - Vehicle fleets
 - Logistics systems
 - Large infrastructures
 - Ecommerce shoppers

Designing a Jet Engine

Monitoring an Industrial Robot

Tracking the US Railway System

Challenge: Power Grid Security & Disaster Response

How track a geographically distributed power grid with thousands of nodes for intrusion or disruption?

- Where are the threats?
- How significant are they?
- How are they moving?
- How should we react?

Challenge: Logistics & Telematics

How track the safe distribution and delivery of millions of time-critical items?

- Where is each item/vehicle right now?
- How are delays or issues (e.g. temperature) affecting its safety?
- Which vehicles are most in need of assistance?
- Is there an emerging widescale problem that needs a strategic response?

Why Do We Need **Digital Twins**?

Challenge: simultaneously track and analyze the <u>dynamic state</u> of 1000s of data sources

- Traditional stream-processing pipelines (e.g., CEP, Flink) cannot handle this:
 - Push all messages through a pipeline of processing steps.
 - Lack a mechanism for storing dynamic state and tracking each data source.
 - Cannot respond to individual data sources.

- Typical work-arounds (ad hoc network of services plus offline analytics) are ineffective:
 - Complex to design and implement, requiring multiple skills
 - Introduces scaling bottlenecks and availability challenges.
 - Offline analytics delay results.

Example with Human in the Loop

Typical telematics systems do not:

- Track data sources *automatically*.
- Perform aggregate analytics online.

As a result, they cannot:

• Predict emerging issues for each data source.

ScaleOut Software

• See important trends in real time (seconds).

Typical Telematics Architecture for Streaming Analytics

Benefits of Using Digital Twins

- **Deep introspection**: Track and update information about *each* data source.
- Fast responses: Continuously analyze incoming telemetry.
- Situational awareness: Continuously aggregate & visualize derived state.
- Transparently scalable: Seamlessly scale using inmemory computing.
- Easy to use: Use simple, objectoriented APIs.

Software Architecture for Streaming Analytics Using Digital Twins

Many Target Use Cases

- Applications that track thousands of data sources which require fast response times, aggregate analysis, and situational awareness
- General category: real-time intelligent monitoring
- Examples:
 - Security/safety monitoring
 - Telematics, logistics
 - Disaster recovery
 - Health tracking
 - Ecommerce
 recommendations
 - Fraud detection
 - IoT / smart cities
 - Transportation safety

Example: Fleet Telematics

- Real-time tracking for a car/truck fleet (typically, thousands of vehicles)
- Telemetry includes location, speed, mechanical & cargo parameters.
- Digital twins add route, cargo, info on driver, service history & issues, weather, etc.
- Using incoming telemetry, digital twins can:
 - Alert driver to upcoming hazardous road conditions or weather delays.
 - Assist lost driver or alert if driving too long or unsafely.
 - Track emerging mechanical issues with vehicle or risk to cargo.
 - Maintain status which can be aggregated for all trucks to enhance dispatcher's situational awareness of the fleet.

Example: Disaster Recovery

- Goal: help find buried survivors after an earthquake using their cell phone data.
- How?
 - 5G cell towers can track direction and signal strength for each subscriber.
 - This information can help locate survivors.
- There are about 350K 5G cell sites in the U.S.
- Digital twins can maintain current status of all cell towers.
 - Can track fast-changing updates to call status for each cell tower.
 - Aggregate analytics can immediately pinpoint areas of greatest need.

Also Use Digital Twins for Simulation

Digital twins simplify the construction of large-scale simulations (1000s to millions of interacting entities).

One use case: a **workload generator** for testing streaming analytics.

Key benefits:

- Allows testing and validation prior to deployment.
- Simplifies application design.
- Enables seamless scaling to model large systems.

ScaleOut Software

Also Use Digital Twins for Simulation

Note: ScaleOut Software

Digital twins simplify the construction of large-scale simulations (1000s to millions of interacting entities).

One use case: a **workload generator** for testing streaming analytics.

Key benefits:

- Allows testing and validation prior to deployment.
- Simplifies application design.
- Enables seamless scaling to model large systems.

Simulation Using a Workload Generator

Another Simulation Use Case

Note: Note:

Build **system simulations** with interacting digital twins exchanging messages for performance evaluation & prediction.

Example: an airline system simulation

- Use digital twins to model physical entities:
 - Airplanes, passengers
 - Airports, gates, etc.
- Model and measure complex interactions.
- Evaluate management decisions faster than real time.
- Enable improved flying experience.

Creating and Hosting Digital Twins

Goals:

- Use a simple, flexible software architecture for implementing digital twin models.
- Leverage the inherent object-oriented nature of digital twins:
 - State information for each instance of a model
 - Common analytics for all instances (code, business rules, and machine learning)
- Let the platform handle the rest:
 - Create and manage digital twin instances at scale.
 - Ensure fast access to digital twin state.
 - Enable real-time aggregate analytics (e.g., mapreduce and query) for digital twin state.

ScaleOut Software

Simulation Digital Twin

Benefits of In-Memory Computing

- What is "in-memory computing"?
 - A scalable platform for hosting in-memory objects with integrated aggregate analytics
 - Transparent message processing, load-balancing, scaling, and high availability
- Scales to host large populations of digital twins for both stream processing and simulation

Digital Twin Hosting Platform Fast Data Access, Message Processing, & Aggregate Analytics

> In-Memory Compute Engine Scalable & Highly Available

Cluster of Physical or Virtual Servers

ScaleOut Software

Digital Twin Development Process

- Application developers create one or more digital twin models and deploy them to the hosting platform using the service's UI.
- For real-time analytics, connect to data sources using popular message hubs or REST.
- For simulation, spawn initial digital twin instances and start simulation.
- Use aggregate analytics to query and visualize state of digital twins.

Using Aggregate Analytics & Query

ScaleOut Software

Aggregate analytics maximize situational awareness.

Example: a logistics application:

- Integrated analytics engine combines key digital twin data in seconds.
 - Example: Determine largest shortfall in hospital supplies by region.
- Streaming service lets users visualize results.
 - Example: Show shortfall by region as a bar chart to alert on problem areas as they occur.
- Users query digital twin data to identify issues and take action.
 - Example: Query digital twins to find specific hospitals with largest shortfall in affected regions.

Example: Tracking the Freight Rail System

- Each year in the US, thousands of freight trains carry 1.6 billion tons of freight across 140,000 miles of track:
 - Approx. 300 trains per week
 - Approx 500K carloads per week
- In 2022, there were more than 1,100 train derailments, causing over 100 million dollars in damage.
- 6,000 hot boxes around the US monitor the temperature of wheel bearings, which can cause derailments if they get too hot.
- Hot boxes just alert operators by radio when high temperature is detected; they do not track trends.
- Digital twins can solve this problem:
 - Track and analyze temperature trends for all wheel bearings.
 - Integrate service history and other relevant data to assess danger and create timely alerts.

Montana train derailment report renews calls for automated systems to detect track problems July 28, 2023

Create and Validate Digital Twin Analytics

Goal: Implement and simulate telemetry tracking from track-side detectors and predict wheel bearing failures before an accident can occur.

- Uses ~ 129K digital twins to both model the system and implement real-time analytics.
- Validates their ability to receive and analyze real-time telemetry from hot boxes.

Digital Twin Simulation

Demo of Train Simulation

Key Takeaways

- Digital twins aren't just for PLM.
- They offer a powerful software architecture for real-time streaming analytics and simulation of large systems.
- Numerous applications in diverse verticals can benefit:
 - Transportation
 - Logistics
 - Disaster Recovery
 - Many more
- In-memory computing provides a key enabling technology:
 - Fast responses
 - Transparent scaling
 - Aggregate analytics
 - Real-time visualization

www.scaleoutsoftware.com