Unlocking the Power of Digital Twins for Streaming Analytics and Simulation of Large Systems

August 1, 2023
Dr. William Bain, Founder & CEO,
wbain@scaleoutsoftware.com
• A new vision for digital twins: real-time analytics and simulation at scale
• Some examples
• Why not “traditional” streaming analytics?
• Why digital twins?
• Target use cases
• Development process
• Enabling technology: in-memory computing
• Aggregate analytics
• Demo
About ScaleOut Software

• Develops and markets software for **in-memory computing**:
 • Scales application performance and
 • Provides real-time analytical insights & simulation using digital twins
 • With proprietary in-memory data storage and computing technology

• Deep domain expertise:
 • Dr. William Bain, Founder & CEO. Bell Labs, Intel, Microsoft
 • Over 18 years in the market
 • Consistent track record of innovation and technology leadership
 • Introduced a digital twin hosting platform in 2018

• Flexible business model to meet diverse needs:
 • Fully supported software releases; on-premise or in the cloud
 • Dedicated to ease-of-use to minimize training and lower TCO
 • Choice of licensing models: perpetual, subscription, cloud-hosted
Uses a scalable in-memory compute engine to host digital twins for real-time monitoring and simulation.

- Build & deploy real-time and simulation digital twin models.
- Incorporate C#/Java code, business rules, and machine learning
- Create & visualize real-time aggregate analytics and continuous queries.
- Access an Azure-hosted cloud service or run on-premises.
- Use an intuitive web-based UI.
- Connect to data sources using Azure IoT Hub, AWS, Kafka, and REST.
A New Vision for Digital Twins

A digital twin is a virtual representation of real-world entities and processes, synchronized at a specified frequency and fidelity. ... Digital twins use real-time and historical data to represent the past and present and simulate predicted futures. ... -- as defined by the Digital Twin Consortium

- Digital twins were conceived to help design and test complex new devices (PLM).
- More recently, operational digital twins are used in small numbers to track telemetry in production for preventative maintenance.
- The next step: use large collections of digital twins to track systems with many data sources:
 - Vehicle fleets
 - Logistics systems
 - Large infrastructures
 - Ecommerce shoppers
Challenge: Power Grid Security & Disaster Response

How track a geographically distributed power grid with thousands of nodes for intrusion or disruption?

• Where are the threats?
• How significant are they?
• How are they moving?
• How should we react?
Challenge: Logistics & Telematics

How track the safe distribution and delivery of millions of time-critical items?

• Where is each item/vehicle right now?
• How are delays or issues (e.g. temperature) affecting its safety?
• Which vehicles are most in need of assistance?
• Is there an emerging widespread problem that needs a strategic response?
Why Do We Need Digital Twins?

Challenge: simultaneously track and analyze the dynamic state of 1000s of data sources

- Traditional stream-processing pipelines (e.g., CEP, Flink) cannot handle this:
 - Push all messages through a pipeline of processing steps.
 - Lack a mechanism for storing dynamic state and tracking each data source.
 - Cannot respond to individual data sources.

- Typical work-arounds (ad hoc network of services plus offline analytics) are ineffective:
 - Complex to design and implement, requiring multiple skills
 - Introduces scaling bottlenecks and availability challenges.
 - Offline analytics delay results.
Example with Human in the Loop

Typical telematics systems do not:
• Track data sources *automatically*.
• Perform aggregate analytics online.

As a result, they cannot:
• Predict emerging issues for each data source.
• See important trends in real time (seconds).

Typical Telematics Architecture for Streaming Analytics
Benefits of Using Digital Twins

- **Deep introspection**: Track and update information about *each* data source.
- **Fast responses**: Continuously analyze incoming telemetry.
- **Situational awareness**: Continuously aggregate & visualize derived state.
- **Transparencyly scalable**: Seamlessly scale using in-memory computing.
- **Easy to use**: Use simple, object-oriented APIs.
Many Target Use Cases

- Applications that track **thousands of data sources** which require **fast response times**, aggregate analysis, and **situational awareness**

- General category: **real-time intelligent monitoring**

- Examples:
 - Security/safety monitoring
 - Telematics, logistics
 - Disaster recovery
 - Health tracking
 - Ecommerce recommendations
 - Fraud detection
 - IoT / smart cities
 - Transportation safety
Example: Fleet Telematics

- Real-time tracking for a car/truck fleet (typically, thousands of vehicles)
- Telemetry includes location, speed, mechanical & cargo parameters.
- Digital twins add route, cargo, info on driver, service history & issues, weather, etc.
- Using incoming telemetry, digital twins can:
 - Alert driver to upcoming hazardous road conditions or weather delays.
 - Assist lost driver or alert if driving too long or unsafely.
 - Track emerging mechanical issues with vehicle or risk to cargo.
 - Maintain status which can be aggregated for all trucks to enhance dispatcher’s situational awareness of the fleet.
Example: Disaster Recovery

• Goal: help find buried survivors after an earthquake using their cell phone data.

• How?
 • 5G cell towers can track direction and signal strength for each subscriber.
 • This information can help locate survivors.

• There are about 350K 5G cell sites in the U.S.

• Digital twins can maintain current status of all cell towers.
 • Can track fast-changing updates to call status for each cell tower.
 • Aggregate analytics can immediately pinpoint areas of greatest need.
Also Use Digital Twins for Simulation

Digital twins simplify the construction of large-scale simulations (1000s to millions of interacting entities).

One use case: a **workload generator** for testing streaming analytics.

Key benefits:

- Allows testing and validation prior to deployment.
- Simplifies application design.
- Enables seamless scaling to model large systems.
Also Use Digital Twins for Simulation

Digital twins simplify the construction of large-scale simulations (1000s to millions of interacting entities).

One use case: a **workload generator** for testing streaming analytics.

Key benefits:
- Allows testing and validation prior to deployment.
- Simplifies application design.
- Enables seamless scaling to model large systems.
Another Simulation Use Case

Build **system simulations** with interacting digital twins exchanging messages for performance evaluation & prediction.

Example: an airline system simulation

- Use digital twins to model physical entities:
 - Airplanes, passengers
 - Airports, gates, etc.
- Model and measure complex interactions.
- Evaluate management decisions faster than real time.
- Enable improved flying experience.
Creating and Hosting Digital Twins

Goals:

• Use a simple, flexible software architecture for implementing digital twin models.

• Leverage the inherent object-oriented nature of digital twins:
 • State information for each instance of a model
 • Common analytics for all instances (code, business rules, and machine learning)

• Let the platform handle the rest:
 • Create and manage digital twin instances at scale.
 • Ensure fast access to digital twin state.
 • Enable real-time aggregate analytics (e.g., map-reduce and query) for digital twin state.
Benefits of In-Memory Computing

• What is “in-memory computing”?
 • A scalable platform for hosting in-memory objects with integrated aggregate analytics
 • Transparent message processing, load-balancing, scaling, and high availability
• Scales to host large populations of digital twins for both stream processing and simulation

Digital Twin Hosting Platform
Fast Data Access, Message Processing, & Aggregate Analytics

In-Memory Compute Engine
Scalable & Highly Available

Cluster of Physical or Virtual Servers

Real-world Entities

Event Messages

Digital Twins

© ScaleOut Software, Inc.

© ScaleOut Software, Inc.
Digital Twin Development Process

• Application developers create one or more digital twin models and deploy them to the hosting platform using the service’s UI.

• For real-time analytics, connect to data sources using popular message hubs or REST.

• For simulation, spawn initial digital twin instances and start simulation.

• Use aggregate analytics to query and visualize state of digital twins.
Using Aggregate Analytics & Query

Aggregate analytics maximize situational awareness.

Example: a logistics application:

• Integrated analytics engine combines key digital twin data in seconds.
 • Example: Determine largest shortfall in hospital supplies by region.

• Streaming service lets users visualize results.
 • Example: Show shortfall by region as a bar chart to alert on problem areas as they occur.

• Users query digital twin data to identify issues and take action.
 • Example: Query digital twins to find specific hospitals with largest shortfall in affected regions.
Example: Tracking the Freight Rail System

• Each year in the US, thousands of freight trains carry 1.6 billion tons of freight across 140,000 miles of track:
 • Approx. 300 trains per week
 • Approx 500K carloads per week

• In 2022, there were more than 1,100 train derailments, causing over 100 million dollars in damage.

• 6,000 hot boxes around the US monitor the temperature of wheel bearings, which can cause derailments if they get too hot.

• Hot boxes just alert operators by radio when high temperature is detected; they do not track trends.

• Digital twins can solve this problem:
 • Track and analyze temperature trends for all wheel bearings.
 • Integrate service history and other relevant data to assess danger and create timely alerts.
Goal: Implement and simulate telemetry tracking from track-side detectors and predict wheel bearing failures before an accident can occur.

- Uses ~129K digital twins to both model the system and implement real-time analytics.
- Validates their ability to receive and analyze real-time telemetry from hot boxes.
Demo of Train Simulation
Key Takeaways

• Digital twins aren’t just for PLM.
• They offer a powerful software architecture for real-time streaming analytics and simulation of large systems.
• Numerous applications in diverse verticals can benefit:
 • Transportation
 • Logistics
 • Disaster Recovery
 • Many more
• In-memory computing provides a key enabling technology:
 • Fast responses
 • Transparent scaling
 • Aggregate analytics
 • Real-time visualization